FUZZY LOGISTIC DIFFERENCE EQUATION
author
Abstract:
In this study, we consider two different inequivalent formulations of the logistic difference equation $x_{n+1}= beta x_n(1- x_n), n=0,1,..., $ where $x_n$ is a sequence of fuzzy numbers and $beta$ is a positive fuzzy number. The major contribution of this paper is to study the existence, uniqueness and global behavior of the solutions for two corresponding equations, using the concept of Hukuhara difference for fuzzy numbers. Finally, some examples are given to illustrate our results.
similar resources
On a Fuzzy Logistic Difference Equation
This paper is concerned with the existence, uniqueness and asymptotic behavior of the positive solutions of a fuzzy Logistic difference equation xn+1 = A+Bxn−1e −xn , n = 0, 1, · · · , where (xn) is a sequence of positive fuzzy number, A,B are positive fuzzy numbers and the initial conditions x−1, x0 are positive fuzzy numbers. Moreover an illustrative example is given to demonstrate the effect...
full textBEHAVIOR OF SOLUTIONS TO A FUZZY NONLINEAR DIFFERENCE EQUATION
In this paper, we study the existence, asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equation$$ x_{n+1}=frac{Ax_n+x_{n-1}}{B+x_{n-1}}, n=0,1,cdots,$$ where $(x_n)$ is a sequence of positive fuzzy number, $A, B$ are positive fuzzy numbers and the initial conditions $x_{-1}, x_0$ are positive fuzzy numbers.
full textDynamics of Delay Logistic Difference Equation in the Complex Plane
The dynamics of the delay logistic equation with complex parameters and arbitrary complex initial conditions is investigated. The analysis of the local stability of this difference equation has been carried out. We further exhibit several interesting characteristics of the solutions of this equation, using computations, which does not arise when we consider the same equation with positive real ...
full textOscillation of a Logistic Difference Equation with Several Delays
Difference equations provide an important framework for analysis of dynamical phenomena in biology, ecology, economics, and so forth. For example, in population dynamics discrete systems adequately describe organisms for which births occur in regular, usually short, breeding seasons. Recently the problem of oscillation and nonoscillation of solutions for nonlinear delay difference equations has...
full textA period 5 difference equation
The main goal of this note is to introduce another second-order differenceequation where every nontrivial solution is of minimal period 5, namelythe difference equation:xn+1 =1 + xn−1xnxn−1 − 1, n = 1, 2, 3, . . .with initial conditions x0 and x1 any real numbers such that x0x1 6= 1.
full textbehavior of solutions to a fuzzy nonlinear difference equation
in this paper, we study the existence, asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equation$$ x_{n+1}=frac{ax_n+x_{n-1}}{b+x_{n-1}}, n=0,1,cdots,$$ where $(x_n)$ is a sequence of positive fuzzy number, $a, b$ are positive fuzzy numbers and the initial conditions $x_{-1}, x_0$ are positive fuzzy numbers.
full textMy Resources
Journal title
volume 15 issue 7
pages 55- 66
publication date 2018-10-29
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023